You are in PORTALS Cardiac Imaging Detecting Risk for Heart Attack, Stroke Heightened by New Ultrasound Device

Detecting Risk for Heart Attack, Stroke Heightened by New Ultrasound Device

E-mail Print PDF


Share

new ultrasound device

Researchers from North Carolina State University and the University of North Carolina at Chapel Hill have recently developed an ultrasound device that could help identify arterial plaque that is at high risk of breaking off and causing a heart attack or stroke.

Overtime plaque builds up in arteries as we age. Some types of plaque are labeled as "vulnerable," meaning that they have a much higher chance to break off from the artery wall and cause a heart attack or stroke.

"Existing state-of-the-art technologies are capable of determining if plaque is present in the arteries, but can't tell whether it's vulnerable. And that makes it difficult to assess a patient's risk," said co-author of a paper on the new device and professor in the joint biomedical engineering department at NC State and Chapel Hill, Dr. Paul Dayton.

"Our goal was to develop something that could effectively identify which plaques are vulnerable."

As of today there are two ultrasound methods that can aid in identifying vulnerable plaques, however both techniques rely on the use of contrast agents called "microbubbles."

The first technique is to identify "vasa vasorum" in arteries. These are clusters of small blood vessels that often penetrate arterial plaque, and which are considered indicators that a plaque is vulnerable. When microbubbles are injected into an artery, they follow the flow of the blood. If vasa vasorum are existent, the microbubbles will flow through these blood vessels as well, effectively highlighting them on ultrasound images.

The second technique is called molecular imaging, and relies on the use of "targeted" microbubbles. These microbubbles attach themselves to specific molecules that are more likely to be found in vulnerable plaques, making the plaques stand out on ultrasound images.

"The problem is that existing intravascular ultrasound technology does not do a very good job in detecting contrast agents," said NC State associate professor of mechanical and aerospace engineering, an adjunct professor of biomedical engineering and co-author of the paper, Dr. Xiaoning Jiang.

"So we've developed a dual-frequency intravascular ultrasound transducer which transmits and receives acoustic signals. Operating on two frequencies allows us to do everything the existing intravascular ultrasound devices can do, but also makes it much easier for us to detect the contrast agents, or microbubbles, used for molecular imaging and vasa vasorum detection."

The prototype device has performed well in a laboratory setting, however the researchers say they are continuing to optimize the technology. They hope to launch pre-clinical studies in the near future.

The paper, "A preliminary engineering design of intravascular dual-frequency transducers for contrast enhanced acoustic angiography and molecular imaging," is set to be published in the May issue of IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control.


Share
These signals are relayed buying clomid online safe which then is by a number of such as medial preoptic and paraventricular nulcei.
javporn.cc