You are in PORTALS Cardiac Imaging New Rehabilitation Tool Improves Motor Skills Following Stroke

New Rehabilitation Tool Improves Motor Skills Following Stroke

E-mail Print PDF


A recent study shows that by utilizing a new stroke rehabilitation device that adapts a patient's thoughts to electrical impulses to move upper extremities, stroke patients reported improvements in their motor skills and capability to perform daily activities.

Results of the study were presented at the annual meeting of the Radiological Society of North America (RSNA).

"Each year, nearly 800,000 people suffer a new or recurrent stroke in the United States, and 50 percent of those have some degree of upper extremity disability. Rehabilitation sessions with our device allow patients to achieve an additional level of recovery and a higher quality of life," said director of functional neuroimaging in radiology at the University of Wisconsin-Madison, Vivek Prabhakaran, M.D., Ph.D.

Prabhakaran, in collaboration with co-principal investigator Justin Williams, Ph.D., and an esteemed team of researchers, constructed the novel rehabilitation device by combining a functional electrical stimulation (FES) system, which is currently used to help stroke patients recover limb function, and a brain control interface (BCI), which supplies a direct form of communication between the brain and this peripheral stimulation device.

In an FES system, electrical currents are employed to engage nerves in paralyzed extremities. Using a computer and an electrode cap positioned on the head of the patient, the new BCI-FES device (called the Closed-Loop Neural Activity-Triggered Stroke Rehabilitation Device) interprets electrical impulses from the brain and transmits the information to the FES.

"FES is a passive technique in that the electrical impulses move the patients' extremities for them. When a patient using our device is asked to imagine or attempt to move his or her hand, the BCI translates that brain activity to a signal that triggers the FES. Our system adds an active component to the rehabilitation by linking brain activity to the peripheral stimulation device, which gives the patients direct control over their movement," said Prabhakaran.stroke rehab

The research team organized a small clinical trial of their rehabilitation device, enrolling eight patients with one hand affected by stroke. The patients were also eligible to serve as a control group by using their normal, unaffected hand.

Patients in the study represented a wide range of stroke acuteness and amount of time passed since the stroke occurred. Despite having received standard rehabilitative care, the patients had various degrees of residual motor discrepancies in their upper extremities. Each underwent nine to 15 rehabilitation sessions of two to three hours with the new device over a period of three to six weeks.

The patients also underwent functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) before, at the mid-point of, at the end of, and one month following the rehabilitation period.

fMRI is has the ability to reveal which areas of the brain are activated while the patient performs a task, and DTI reveals the integrity of fibers within the white matter that connects the brain's functional areas.

Patients who suffered a stroke of modest severity realized the greatest improvements to motor skill function following the rehabilitation sessions. Patients diagnosed with mild and severe strokes reported improved ability to complete activities of daily life after undergoing rehabilitation.

"The results captured throughout the rehabilitation process, specifically the ratio of hemispheric involvement of motor areas, related well to the behavioral changes observed in patients. A comparison of pre-rehabilitation and post-rehabilitation fMRI results revealed reorganization in the regions of the brain responsible for motor function. DTI results over the course of the rehabilitation period revealed a gradual strengthening of the integrity of the fiber tracts," said Prabhakaran.

"Our hope is that this device not only shortens rehabilitation time for stroke patients, but also that it brings a higher level of recovery than is achievable with the current standard of care. We believe brain imaging will be helpful in both planning and tracking a stroke patient's therapy, as well as learning more about neuroplastic changes during recovery," he concluded.

These signals are relayed buying clomid online safe which then is by a number of such as medial preoptic and paraventricular nulcei.